A Posteriori Error Estimates for Elliptic Eigenvalue Problems Using Auxiliary Subspace Techniques
نویسندگان
چکیده
We propose an a posteriori error estimator for high-order p- or hp-finite element discretizations of selfadjoint linear elliptic eigenvalue problems that is appropriate estimating the in approximation cluster and corresponding invariant subspace. The based on computation approximate functions space complements one which eigenvectors were computed. These are used to construct estimates collective measures error, such as Hausdorff distance between true clusters eigenvalues, subspace gap subspaces. Numerical experiments demonstrate practical effectivity approach.
منابع مشابه
A Posteriori Estimates Using Auxiliary Subspace Techniques
A posteriori error estimators based on auxiliary subspace techniques for second order elliptic problems in Rd (d ≥ 2) are considered. In this approach, the solution of a global problem is utilized as the error estimator. As the continuity and coercivity of the problem trivially leads to an efficiency bound, the main focus of this paper is to derive an analogous effectivity bound and to determin...
متن کاملElliptic Reconstruction and a Posteriori Error Estimates for Parabolic Problems
It is known that the energy technique for a posteriori error analysis of finite element discretizations of parabolic problems yields suboptimal rates in the norm L∞(0, T ; L2(Ω)). In this paper we combine energy techniques with an appropriate pointwise representation of the error based on an elliptic reconstruction operator which restores the optimal order (and regularity for piecewise polynomi...
متن کاملResidual type a posteriori error estimates for elliptic obstacle problems
under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract In this paper, we give an a posteriori error estimates with constitutive law for some obstacle problem. The error estimator involves some parameter ε appeared in some penalized equation.
متن کاملStar-Based a Posteriori Error Estimates for Elliptic Problems
We give an a posteriori error estimator for nonconforming finite element approximations of diffusionreaction and Stokes problems, which relies on the solution of local problems on stars. It is proved to be equivalent to the energy error up to a data oscillation, without requiring Helmholtz decomposition of the error nor saturation assumption. Numerical experiments illustrate the good behavior a...
متن کاملA New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems
In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Scientific Computing
سال: 2021
ISSN: ['1573-7691', '0885-7474']
DOI: https://doi.org/10.1007/s10915-021-01572-2